Patrones de Diseno en
Videojuegos

Factory y Builder

Introduccion

;.De Qué vamos a hablar?

Patrones de Diseno: Concepto y Beneficios

Patron Factory: Definicidn, Uso y Ejemplos en Videojuegos
Patron Builder: Definicion, Uso y Ejemplos en Videojuegos
Comparacion entre Factory y Builder

Conclusiones y Referencias

Patrones de Diseno en Videojuegos

Los patrones de diseno son soluciones reutilizables a problemas comunes en el desarrollo de software. En el
contexto de los videojuegos, estos patrones ayudan a estructurar el cédigo de manera eficiente, facilitando la
creacion, mantenimiento y escalabilidad del juego.

En el ambito de los videojuegos, los patrones de disefo son especialmente Utiles para manejar la complejidad
inherente a los sistemas de juego, como la gestion de entidades, la ldgica de juego, la interaccidn del usuario y
la renderizacién grafica.

En esta presentacion, nos centraremos en dos patrones de diseno fundamentales: el patron Factory y el
patrén Builder, explorando sus definiciones, usos y ejemplos practicos en el desarrollo de videojuegos.

Tipos de Patrones de Diseno

Si bien no hay un numero fijo de patrones de diseno, algunos de los mas comunes incluyen:

= Singleton

m Factory

= Builder

= Observer

= Strategy

m Decorator

= Command

= Adapter

m ECS (Entity-Component-System)

m etc...

En esta presentacion, nos centraremos en los patrones Factory y Builder, explorando sus definiciones, usos y
ejemplos practicos en el desarrollo de videojuegos.

Patron Factory

Patron de disefo creacional que proporciona una interfaz para crear objetos en una superclase, pero permite
que las subclases alteren el tipo de objetos que se crearan.

Es importante porque promueve la flexibilidad y la reutilizacion del cédigo, permitiendo que el sistema sea
mas facil de mantener y extender. Se basa principalmente en el principio de "programar para una interfaz, no
para una implementacion".

Interfoz T Factory
método() getObject(type): Interfaz

Clase 4 Clase B

Ejemplo de Patrén Factory en Videojuegos

Vamos a ver un ejemplo sencillo de como implementar el patréon Factory en Python para crear diferentes tipos
de enemigos en un videojuego.

class EnemyFactory
staticmethod
def create_enemy(enemy_type
enemy_type = "goblin
Goblin
enemy_type = "troll
Troll

ValueError(“Unknown enemy type

Ejemplo de Patréon Factory en Videojuegos (Continuacion)

print(goblin.attack
print(troll.attack

Patron Builder

Patron de diseno creacional que separa la construccion de un objeto complejo de su representacion,
permitiendo que el mismo proceso de construccion pueda crear diferentes representaciones.

Es importante porque facilita la creacion de objetos complejos paso a paso, promoviendo la claridad y la
flexibilidad en el cddigo. Se basa en el principio de "separar la construccién de un objeto de su

representacion".

CharacterBuilder
- health

= Aname

- type

- PDWET

- health(value)

- na.me.('m[ue;}

'-ul:;ui[at(}: Character

Ejemplo de Patréon Builder en Videojuegos

Vamos a ver un ejemplo sencillo de como implementar el patréon Builder en Python para crear diferentes tipos
de personajes en un videojuego.

class CharacterBuilder

def __init__ (self
self.character = Character

def set_name(self, name
self.character.name name
return self

def set_armor(self, armor
self.character.armor armor
return self

def set_weapon(self, weapon
self.character.weapon = weapon
return self

def build(self
return self.character

Ejemplo de Patrén Builder en Videojuegos (Continuacion)

print(warrior
print(mage

Comparacion entre Factory y Builder

Caracteristica Patron Factory Patron Builder

. Crear objetos sin especificar la clase) _ _
Proposito ; Construir objetos complejos paso a paso
exacta

Cuando el sistema debe ser)))
Cuando se necesita crear objetos complejos

Uso tipico independiente de como se crean los .])
_ con multiples configuraciones
objetos
Complejidad del) _ Crea objetos complejos con multiples
. Generalmente crea objetos simples .

objeto atributos

. Menos flexible en términos de Mas flexible, permite configuraciones
Flexibilidad

configuracion del objeto detalladas

Conclusiones

Los patrones de diseno son herramientas esenciales para estructurar el codigo de manera eficiente en el
desarrollo de videojuegos.

El patron Factory es ideal para crear objetos sin especificar la clase exacta, promoviendo la flexibilidad y
reutilizacion del cédigo.

El patron Builder es Util para construir objetos complejos paso a paso, facilitando la claridad y flexibilidad
en la creacion de objetos.

La eleccion entre Factory y Builder depende de la complejidad del objeto a crear y los requisitos especificos
del proyecto.

Ambos patrones contribuyen a un cédigo mas limpio, mantenible y escalable en el desarrollo de

videojuegos.

Referencias

» Desarrollo Homebrew para 16 bits - V. Suarez

m Design Patterns: Elements of Reusable Object-Oriented Software

= Documentacion de Python: https://docs.python.org/3/

https://amzn.to/3NrHBxm
https://amzn.to/49QkANm
https://docs.python.org/3/

