
Patrones de Diseño en

Videojuegos
Factory y Builder

Introducción

¿De Qué vamos a hablar?
Patrones de Diseño: Concepto y Beneficios

Patrón Factory: Definición, Uso y Ejemplos en Videojuegos

Patrón Builder: Definición, Uso y Ejemplos en Videojuegos

Comparación entre Factory y Builder

Conclusiones y Referencias

Patrones de Diseño en Videojuegos

En el ámbito de los videojuegos, los patrones de diseño son especialmente útiles para manejar la complejidad

inherente a los sistemas de juego, como la gestión de entidades, la lógica de juego, la interacción del usuario y

la renderización gráfica.

En esta presentación, nos centraremos en dos patrones de diseño fundamentales: el patrón Factory y el

patrón Builder, explorando sus definiciones, usos y ejemplos prácticos en el desarrollo de videojuegos.

Los patrones de diseño son soluciones reutilizables a problemas comunes en el desarrollo de software. En el

contexto de los videojuegos, estos patrones ayudan a estructurar el código de manera eficiente, facilitando la

creación, mantenimiento y escalabilidad del juego.

Tipos de Patrones de Diseño

Singleton

Factory

Builder

Observer

Strategy

Decorator

Command

Adapter

ECS (Entity-Component-System)

etc…

En esta presentación, nos centraremos en los patrones Factory y Builder, explorando sus definiciones, usos y

ejemplos prácticos en el desarrollo de videojuegos.

Si bien no hay un número fijo de patrones de diseño, algunos de los más comunes incluyen:

Patrón Factory

Patrón de diseño creacional que proporciona una interfaz para crear objetos en una superclase, pero permite

que las subclases alteren el tipo de objetos que se crearán.

Es importante porque promueve la flexibilidad y la reutilización del código, permitiendo que el sistema sea

más fácil de mantener y extender. Se basa principalmente en el principio de "programar para una interfaz, no

para una implementación".

Ejemplo de Patrón Factory en Videojuegos

Vamos a ver un ejemplo sencillo de cómo implementar el patrón Factory en Python para crear diferentes tipos

de enemigos en un videojuego.

class EnemyFactory:

 @staticmethod

 def create_enemy(enemy_type):

 if enemy_type == "goblin":

 return Goblin()

 elif enemy_type == "troll":

 return Troll()

 else:

 raise ValueError("Unknown enemy type")

class Enemy:

 def attack(self):

 pass

class Goblin(Enemy):

 def attack(self):

 return "Goblin attacks with a club!"

class Troll(Enemy):

 def attack(self):

 return "Troll attacks with a hammer!"

Ejemplo de Patrón Factory en Videojuegos (Continuación)

print(goblin.attack()) # Output: Goblin attacks with a club!

print(troll.attack()) # Output: Troll attacks with a hammer!

Uso del Factory para crear enemigos

goblin = EnemyFactory.create_enemy("goblin")

troll = EnemyFactory.create_enemy("troll")

Patrón Builder

Patrón de diseño creacional que separa la construcción de un objeto complejo de su representación,

permitiendo que el mismo proceso de construcción pueda crear diferentes representaciones.

Es importante porque facilita la creación de objetos complejos paso a paso, promoviendo la claridad y la

flexibilidad en el código. Se basa en el principio de "separar la construcción de un objeto de su

representación".

Ejemplo de Patrón Builder en Videojuegos

Vamos a ver un ejemplo sencillo de cómo implementar el patrón Builder en Python para crear diferentes tipos

de personajes en un videojuego.

class CharacterBuilder:

 def __init__(self):

 self.character = Character()

 def set_name(self, name):

 self.character.name = name

 return self

 def set_armor(self, armor):

 self.character.armor = armor

 return self

 def set_weapon(self, weapon):

 self.character.weapon = weapon

 return self

 def build(self):

 return self.character

class Character:

 def __init__(self):

 self.name = ""

 self.armor = ""

 self.weapon = ""

 def __str__(self):

 return f"Character: {self.name}, Armor: {self.armor}, Weapon: {self.weapon}"

Ejemplo de Patrón Builder en Videojuegos (Continuación)

print(warrior) # Output: Character: Warrior, Armor: Plate, Weapon: Sword

print(mage) # Output: Character: Mage, Armor: Robe, Weapon: Staff

Uso del Builder para crear personajes

warrior = CharacterBuilder()

 .set_name("Warrior")

 .set_armor("Plate")

 .set_weapon("Sword")

 .build()

mage = CharacterBuilder()

 .set_name("Mage")

 .set_armor("Robe")

 .set_weapon("Staff")

 .build()

Comparación entre Factory y Builder

Característica Patrón Factory Patrón Builder

Propósito
Crear objetos sin especificar la clase

exacta
Construir objetos complejos paso a paso

Uso típico

Cuando el sistema debe ser

independiente de cómo se crean los

objetos

Cuando se necesita crear objetos complejos

con múltiples configuraciones

Complejidad del

objeto
Generalmente crea objetos simples

Crea objetos complejos con múltiples

atributos

Flexibilidad
Menos flexible en términos de

configuración del objeto

Más flexible, permite configuraciones

detalladas

Conclusiones
Los patrones de diseño son herramientas esenciales para estructurar el código de manera eficiente en el

desarrollo de videojuegos.

El patrón Factory es ideal para crear objetos sin especificar la clase exacta, promoviendo la flexibilidad y

reutilización del código.

El patrón Builder es útil para construir objetos complejos paso a paso, facilitando la claridad y flexibilidad

en la creación de objetos.

La elección entre Factory y Builder depende de la complejidad del objeto a crear y los requisitos específicos

del proyecto.

Ambos patrones contribuyen a un código más limpio, mantenible y escalable en el desarrollo de

videojuegos.

Referencias
Desarrollo Homebrew para 16 bits - V. Suárez

Design Patterns: Elements of Reusable Object-Oriented Software

Documentación de Python: https://docs.python.org/3/

https://amzn.to/3NrHBxm
https://amzn.to/49QkANm
https://docs.python.org/3/

