
Físicas de Videojuegos
Colisiones



Introducción

¿De Qué vamos a hablar?
Colisiones

Definición de colisión y aplicación en videojuegos

Colisiones 2D vs 3D

Tipos de colisiones

Punto vs Rectángulo

Punto vs Círculo

Rectángulo vs Rectángulo

Círculo vs Círculo

Círculo vs Rectángulo

Cubo vs Cubo

Ejemplo en C con Raylib de detección de colisiones



Colisiones en Videojuegos

Es importante distinguir entre la detección de colisiones y la respuesta a las colisiones. La detección de

colisiones implica identificar cuándo y dónde ocurre una colisión, mientras que la respuesta a las colisiones

implica determinar qué sucede después de que se detecta una colisión, como rebotar, detenerse o aplicar

daño.

En un videojuego, una colisión se refiere al evento en el que dos o más objetos del juego entran en contacto o

se superponen entre sí. Las colisiones son fundamentales para la interacción entre los objetos del juego y

pueden afectar la jugabilidad, la física y la lógica del juego.



Definición de Colisión y Aplicación en Videojuegos

Normalmente cada objeto del juego tiene una "caja de colisión" o "hitbox" que define su área de interacción.

Cuando las cajas de colisión de dos objetos se superponen, se considera que ha ocurrido una colisión.

Una colisión en videojuegos se define como el evento que ocurre cuando dos o más objetos del juego entran

en contacto o se superponen entre sí. Este evento es crucial para la interacción entre los objetos del juego y

puede influir en la jugabilidad, la física y la lógica del juego.



Colisiones 2D vs 3D

Las colisiones en 2D y 3D difieren principalmente en la dimensionalidad de los objetos y las técnicas

utilizadas para detectar y manejar las colisiones.

Mientras que las colisiones 2D se manejan en un plano bidimensional utilizando formas como rectángulos,

círculos y polígonos, las colisiones 3D se manejan en un espacio tridimensional utilizando formas como cajas,

esferas y mallas complejas.



Tipos de Colisiones

Existen varios tipos de colisiones comunes en videojuegos, cada una con sus propias técnicas de detección:

Punto vs Rectángulo

Punto vs Círculo

Rectángulo vs Rectángulo

Círculo vs Círculo

Círculo vs Rectángulo

Cubo vs Cubo



Punto vs Rectángulo

Se detecta si un punto (x, y) está dentro de los límites de un rectángulo definido por su posición (rect.X, rect.Y),

ancho (rect.Width) y alto (rect.Height).

Puede calcularse con la siguiente fórmula:

(rect.x ≤ point.x ≤ rect.x+ rect.width)AND(rect.y ≤ point.y ≤ rect.y + rect.height)



Punto vs Círculo

Se detecta si un punto (x, y) está dentro de un círculo definido por su centro (circle.x, circle.y) y su radio

(circle.radius).

Puede calcularse con la siguiente fórmula:

(point.x− circle.x) +2 (point.y − circle.y) <2 circle.radius2



Rectángulo vs Rectángulo

Se detecta si dos rectángulos se superponen. Cada rectángulo está definido por su posición (rect1.X, rect1.Y) y

sus dimensiones (rect1.Width, rect1.Height).

Puede calcularse con la siguiente fórmula:

(rect1.x < rect2.x+ rect2.width)AND(rect1.x+ rect1.width > rect2.x)
AND(rect1.y < rect2.y + rect2.height)AND(rect1.y + rect1.height > rect2.y)



Círculo vs Círculo

Se detecta si dos círculos se superponen. Cada círculo está definido por su centro (circle1.x, circle1.y) y su

radio (circle1.radius).

Puede calcularse con la siguiente fórmula:

(circle1.x− circle2.x) +2 (circle1.y − circle2.y) <2 (circle1.radius+ circle2.radius)2



Círculo vs Rectángulo

Se detecta si un círculo y un rectángulo se superponen. El círculo está definido por su centro (circle.x, circle.y) y

su radio (circle.radius), mientras que el rectángulo está definido por su posición (rect.x, rect.y) y sus

dimensiones (rect.width, rect.height). Puede calcularse con la siguiente fórmula:

closestX = clamp(circle.x, rect.x, rect.x+ rect.width)
closestY = clamp(circle.y, rect.y, rect.y + rect.height)

(circle.x− closestX) +2 (circle.y − closestY ) <2 circle.radius2



Cubo vs Cubo

Se detecta si dos cubos se superponen. Cada cubo está definido por su posición (box1.x, box1.y, box1.z) y sus

dimensiones (box1.width, box1.height, box1.depth).

Puede calcularse con la siguiente fórmula:

(box1.x < box2.x+ box2.width)AND(box1.x+ box1.width > box2.x)
AND(box1.y < box2.y + box2.height)AND(box1.y + box1.height > box2.y)
AND(box1.z < box2.z + box2.depth)AND(box1.z + box1.depth > box2.z)



Ejemplo en C con Raylib de Detección de Colisiones

A continuación dejamos un enlace para ver un ejemplo práctico de cómo implementar la detección de

colisiones en C utilizando la biblioteca Raylib:

Ejemplo de Colisiones con Raylib

https://github.com/makeclassicgames/Collisions


Conclusiones
Las colisiones son fundamentales para la interacción en videojuegos.

Existen diferentes tipos de colisiones, cada una con sus propias técnicas de detección.

La detección de colisiones es crucial para la jugabilidad y la física del juego.

Implementar colisiones correctamente mejora la experiencia del jugador.



Referencias
Desarrollo Homebrew para 16 bits - V. Suárez

PlutieDev - Collisions in 2D Games

"Real-Time Collision Detection" de Christer Ericson

Documentación de Raylib: https://www.raylib.com/

Artículos y tutoriales sobre físicas en videojuegos en Gamasutra y GameDev.net

https://amzn.to/3NrHBxm
https://plutiedev.com/basic-collision
https://amzn.to/4aICDWS
https://www.raylib.com/

