Fisicas de Videojuegos

Colisiones

-



Introduccion

;.De Qué vamos a hablar?

Colisiones

Definicidn de colisidn y aplicacién en videojuegos
Colisiones 2D vs 3D

Tipos de colisiones

Punto vs Rectangulo
Punto vs Circulo
Rectangulo vs Rectangulo
Circulo vs Circulo

Circulo vs Rectangulo

Cubo vs Cubo

Ejemplo en C con Raylib de deteccion de colisiones



Colisiones en Videojuegos

En un videojuego, una colision se refiere al evento en el que dos o mas objetos del juego entran en contacto o
se superponen entre si. Las colisiones son fundamentales para la interaccidon entre los objetos del juego y
pueden afectar la jugabilidad, la fisica y la ldgica del juego.

Es importante distinguir entre la deteccion de colisiones y la respuesta a las colisiones. La deteccidn de
colisiones implica identificar cuando y donde ocurre una colisidon, mientras que la respuesta a las colisiones
implica determinar qué sucede después de que se detecta una colision, como rebotar, detenerse o aplicar

dano.

i kL o o o R O i s




Definicion de Colisidon y Aplicacion en Videojuegos

Una colision en videojuegos se define como el evento que ocurre cuando dos o0 mas objetos del juego entran
en contacto o se superponen entre si. Este evento es crucial para la interaccidon entre los objetos del juego y
puede influir en la jugabilidad, la fisica y la logica del juego.

Normalmente cada objeto del juego tiene una "caja de colisién" o "hitbox" que define su area de interaccion.
Cuando las cajas de colisidon de dos objetos se superponen, se considera que ha ocurrido una colision.

Ol:.jec‘t a
TN

Cc:“?s.i:}n

Object b



Colisiones 2D vs 3D

Las colisiones en 2D y 3D difieren principalmente en la dimensionalidad de los objetos y las técnicas
utilizadas para detectar y manejar las colisiones.

Mientras que las colisiones 2D se manejan en un plano bidimensional utilizando formas como rectangulos,
circulos y poligonos, las colisiones 3D se manejan en un espacio tridimensional utilizando formas como cajas,

esferas y mallas complejas.

2D 3D




Tipos de Colisiones

Existen varios tipos de colisiones comunes en videojuegos, cada una con sus propias técnicas de deteccion:

= Punto vs Rectangulo

= Punto vs Circulo

= Rectangulo vs Rectangulo
= Circulo vs Circulo

= Circulo vs Rectangulo

s Cubo vs Cubo



Punto vs Rectangulo

Se detecta si un punto (x, y) esta dentro de los limites de un rectangulo definido por su posicion (rect.X, rect.Y),
ancho (rect.Width) y alto (rect.Height).

Puede calcularse con la siguiente formula:

(rect.x < point.x < rect.x + rect.width) AN D(rect.y < point.y < rect.y + rect.height)

}f,lf

Le?glﬁ‘t




Punto vs Circulo

Se detecta si un punto (x, y) esta dentro de un circulo definido por su centro (circle.x, circle.y) y su radio
(circle.radius).

Puede calcularse con la siguiente formula:

(point.x — circle.xz)® + (point.y — circle.y)® < circle.radius®




Rectangulo vs Rectangulo

Se detecta si dos rectangulos se superponen. Cada rectangulo esta definido por su posicion (rectl. X, rectl.Y)y
sus dimensiones (rectl.Width, rectl.Height).

Puede calcularse con la siguiente formula:

(rectl.x < rect2.xz + rect2.width) AN D(rectl.x + rectl.width > rect2.x)
AN D(rectl.y < rect2.y + rect2.height) AN D(rectl.y + rectl.height > rect2.y)

rect2




Circulo vs Circulo

Se detecta si dos circulos se superponen. Cada circulo esta definido por su centro (circlel1.x, circlel.y) y su
radio (circlel.radius).

Puede calcularse con la siguiente formula:

(circlel.x — circle2.x)? + (circlel.y — circle2.y)® < (circlel.radius + circle2.radius)’




Circulo vs Rectangulo

Se detecta si un circulo y un rectangulo se superponen. El circulo esta definido por su centro (circle.x, circle.y) y
su radio (circle.radius), mientras que el rectangulo esta definido por su posicidn (rect.x, rect.y) y sus
dimensiones (rect.width, rect.height). Puede calcularse con la siguiente férmula:

closestX = clamp(circle.x,rect.x, rect.x + rect.width)
closestY = clamp(circle.y, rect.y, rect.y + rect.height)
(circle.x — closestX)? + (circle.y — closestY)? < circle.radius”

el rc|e.

rect



Cubo vs Cubo

Se detecta si dos cubos se superponen. Cada cubo esta definido por su posicion (box1.x, box1.y, box1.2) y sus
dimensiones (box1.width, box1.height, box1.depth).

Puede calcularse con la siguiente formula:

(boxl.z < box2.x + box2.width) AN D(boxl.x + boxl.width > box2.x)
AN D(boxl.y < box2.y 4+ box2.height) AN D(boxl.y + boxl.height > box2.y)
AN D (boxl.z < box2.z + box2.depth) AN D(boxl.z + boxl.depth > box2.z)

Box2

Box1



Ejemplo en C con Raylib de Deteccién de Colisiones

A continuacion dejamos un enlace para ver un ejemplo practico de como implementar la deteccidn de
colisiones en C utilizando la biblioteca Raylib:

Ejemplo de Colisiones con Raylib


https://github.com/makeclassicgames/Collisions

Conclusiones

» Las colisiones son fundamentales para la interaccién en videojuegos.
» Existen diferentes tipos de colisiones, cada una con sus propias técnicas de deteccion.
= |a deteccion de colisiones es crucial para la jugabilidad y la fisica del juego.

= |Implementar colisiones correctamente mejora la experiencia del jugador.



Referencias

» Desarrollo Homebrew para 16 bits - V. Suarez

= Articulos y tutoriales sobre fisicas en videojuegos en Gamasutra y GameDev.net


https://amzn.to/3NrHBxm
https://plutiedev.com/basic-collision
https://amzn.to/4aICDWS
https://www.raylib.com/

