Programacion en Ensamblador
para NES

Make Classic Games




1. Introduccion

Vamos a comenzar un proyecto de creacion de un juego para NES; pero antes de comenzar, tenemos
que saber Qué es la NES y como funciona.

En esta pequena presentacion, vamos a comenzar con que hace falta para comenzar un proyecto y
como crear un juego realizandolo en NES.

N o




Lockout
2 KB Video RAM

Picture
Character Processing
ROM/RAM Unit

Lockout

RP2A03G Chip}

Ricoh 2A03 Audio
; CPU Processing Unit
Work RAM H
i

2 KB Work RAM

copetti.org © Rodrigo Copetti


http://copetty.org

DATA BUS

OMN—0OD. <=

Ilii

ADDRESS BUS




&
5
)
2]
2
m
<
=
<
a







4. Herramientas de Desarrollo

Veamos qué herramientas de Desarrollo necesitaremos:

Un editor de cadigo: Visual Studio Code con la extension CC65 Macro Assembler
Un programa ensamblador: Utilizaremos el compilador/ensamblador CC65.

Un Emulador para NES: Utilizaremos Mesen

Un editor de Tiles para NES. Utilizaremos NEXXT (Solo Windows)


https://cc65.github.io/
https://www.mesen.ca/
https://frankengraphics.itch.io/nexxt

5. Ensamblador para 6502

Puedes encontrar informacion sobre las instrucciones de ensamblador para 6502 en la siguiente
presentacion:

Presentacion ensamblador 6502

Recuerda que utilizaremos diferentes instrucciones para crear nuestro juego y que explicaremos
ahora solo algunas instrucciones. Para ayudarnos a comprender mejor las instrucciones, usaremos el
siguiente simulador online:

https://tony-cruise.github.io/6502Simulatorhtml



https://makeclassicgames.dev/pdfs/6502.pdf
https://tony-cruise.github.io/6502Simulator.html

5. Programacion en ensamblador (NES)

En la proxima sesion....

Configuracion de la memoria
Constantes y variables
Funciones y Macros
Inicializacion de la consola
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6. Estructura de un Juego de NES

Hay que tener en cuenta que nuestro juego necesitara:

ROM de programa (alojado en el cartucho). Contiene el cadigo del programa.

ROM de Patrones (alojado en el cartucho). Contiene los patrones o graficos del programa.
RAM de la consola. Que guardara las variables y datos del programa en ejecucion.

RAM Adicional. Algunos cartuchos incluyen RAM adicional.

Todos estos elementos, nos van a permitir crear nuestro juego. Pero es importante definir todas las
zonas que usaremos en el juego para gestionarlos correctamente. Para ello, vamos a ver el mapa de
memoria de la NES.
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7. Mapa de Memoria de la NES

Lonas logicas de la memoria

e [P (Zero page): Primeros 256 bytes de la memoria.

0AM: Seccidn de la RAM que almacena una copia de la tabla de definicion de sprites. (256
bytes)

RAM: Resto de datos de la RAM.

HDR: Header ROM. Contiene la cabecera de la ROM. 16 bytes

PRG: ROM Program. Contiene el codigo de nuestro programa (32Kb).

CHR; Tiles ROM. Contiene los graficos de nuestro programa (8Kb).



7. Mapa de Memoria de la NES

Segmentos

Los siguientes segmentos se usaran en nuestro ensamblador.

[P: Zero Page

OAM: tabla de Sprites

BSS: Informacion para las paletas

HEADER: Cabecera

CODE: Cadigo del programa

RODATA: Informacion almacenada en nuestra ROM
VECTORS: Almacena los vectores de interrupcion o reset.
TILES: Almacenara la informacion de los Tiles o graficos.



8. Comenzar Proyecto

Vamos a comenzar nuestro proyecto pero... por donde empezamos?

e (Crear nuestras funciones y macros
Variables y constantes necesarias (ZP, puertos,etc...).

e Inicializar la consola:

o  Configurar interrupciones
o Inicio PPU
o Inicio 0AM

e Preparar fondos
e |Iniciar Sprites
e leer mandos



.proc sumy2
| ldy #2 ; Almacenamos el valor 2 en el registro Y
sty $0300 ; Guardamos el valor de Y en la direccidén de memoria $0300
clc ; Limpiamos el flag de acarreo antes de la suma
adc $0300 ; Sumamos el valor en $0300 (2) al acumulador (0)
sta $0301 ; Guardamos el resultado de la suma en la direccidén de memoria $0301
rts ; retornamos de la subrutina
.endproc

lda #3
jsr sumy2




.macro SUBTRACT_A_FROM_B dest, src

LDA \src
SEC

SBC \dest
| STA \dest
.endmacro

; Set carry for subtraction

SUBTRACT A FROM B $05, $03



; Joystick/Controller values
JOYPAD1 = $4016 ; Joypad 1 (Read/Write)
JOYPAD2 = $4017 ; Joypad 2 (Read/Write)

.segment "ZEROPAGE"

; Gamepad bit values
PAD A $01
PAD B $02
PAD_SELECT = $04
PAD START $08
PAD U $10
PAD D $20
PAD L $40
PAD R $80

nmi ready: .res 1

gamepad: .res 1

d X .res 1
.res 1




9. Inicializar Consola

Antes de hacer cualquier accion de nuestro juego, necesitaremos inicializar todos los elementos del
hardware y los recursos que vamos a utilizar (nametables, sprites, paletas, interrupciones....). Es por
ello que veremos algunas de estas acciones:

Inicializar subprogramas para interrupcion
inicializar fondos
inicializar paletas
inicializar sprites



interrupt
_é

call to subprogram

\ Int Subprogram

return to program



9. Inicializar Consola

Interrupciones (vectores)

NES, tiene un espacio de memoria para almacenar las direcciones de los manejadores de
estas interrupciones. a este espacio o segmento se le llama vectors; y normalmente establece
3 manejadores:

e [RQ: Interrupcion por hardware. Establece la subrutina que se llamara cuando un
hardware externo mande informacion.

e NMI Interrupcion lanzada cuando se pinta la pantalla (vBlank).

e Reset: Vuelve al punto inicial de la consola.



9. Inicializar Consola

Interrupciones (vectores)

NES, tiene un espacio de memoria para almacenar las direcciones de los manejadores de
estas interrupciones. a este espacio o segmento se le llama vectors; y normalmente establece
3 manejadores:

e [RQ: Interrupcion por hardware. Establece la subrutina que se llamara cuando un
hardware externo mande informacion.

e NMI Interrupcion lanzada cuando se pinta la pantalla (vBlank).

e Reset: Vuelve al punto inicial de la consola.
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Draw Vertical

Launch VBlank Int
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9. Inicializar Consola

Por lo tanto en el tiempo que tarda en reiniciar el pintado de pantalla, podemos:

Copiar los registros a la Pila
Actualizar los Sprites
Actualizar los fondos e informacion del juego.

o
o
o
e Reiniciar los valores de la pila a los registros.



; Define PPU Registers

PPU_CONTROL = $2000 ; PPU Control Register 1 (Write)

PPU_MASK = $2001 ; PPU Control Register 2 (Write)

PPU_STATUS = $2002; PPU Status Register (Read)

PPU_SPRRAM ADDRESS = $2003 ; PPU SPR-RAM Address Register (Write)

PPU_SPRRAM I0 = $2004 ; PPU SPR-RAM I/0 Register (Write)
PPU_VRAM ADDRESS1 = $2005 ; PPU VRAM Address Register 1 (Write)
PPU_VRAM ADDRESS2 = $2006 ; PPU VRAM Address Register 2 (Write)
PPU_VRAM I0 = $2007 ; VRAM I/0 Register (Read/Write)

SPRITE DMA = $4014 ; Sprite DMA Register




9. Inicializar la consola

Inicializacion y Gestion de Sprites

Existe una zona de memoria llamada Oam(Object Attribute Memory) que nos va a permitir almacenar
informacion para los Sprites. Normalmente se establece en una zona de memoria de 256 bytes; para
cada sprite se almacena:

e Posicion Y en pantalla (1 byte).
e Indice del tile (Patrén) a utilizar (1 byte).
e Atributos (1 byte): dependiendo del bit de este byte:
o  0-1: La paleta a utilizar (4 disponibles).
o  5:Indica si el Sprite se muestra delante o detras del fondo actual.

o  b:Indica si esta volteado horizontalmente.
o I:Indica si esta volteado verticalmente.

e Posicion X en la pantalla(1 byte).
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