Programacion en Ensamblador
para NES

Make Classic Games

1. Introduccion

Vamos a comenzar un proyecto de creacion de un juego para NES; pero antes de comenzar, tenemos
que saber Qué es la NES y como funciona.

En esta pequena presentacion, vamos a comenzar con que hace falta para comenzar un proyecto y
como crear un juego realizandolo en NES.

N o

Lockout
2 KB Video RAM

Picture
Character Processing
ROM/RAM Unit

Lockout

RP2A03G Chip}

Ricoh 2A03 Audio
; CPU Processing Unit
Work RAM H
i

2 KB Work RAM

copetti.org © Rodrigo Copetti

http://copetty.org

DATA BUS

OMN—0OD. <=

Ilii

ADDRESS BUS

&
5
)
2]
2
m
<
=
<
a

4. Herramientas de Desarrollo

Veamos qué herramientas de Desarrollo necesitaremos:

Un editor de cadigo: Visual Studio Code con la extension CC65 Macro Assembler
Un programa ensamblador: Utilizaremos el compilador/ensamblador CC65.

Un Emulador para NES: Utilizaremos Mesen

Un editor de Tiles para NES. Utilizaremos NEXXT (Solo Windows)

https://cc65.github.io/
https://www.mesen.ca/
https://frankengraphics.itch.io/nexxt

5. Ensamblador para 6502

Puedes encontrar informacion sobre las instrucciones de ensamblador para 6502 en la siguiente
presentacion:

Presentacion ensamblador 6502

Recuerda que utilizaremos diferentes instrucciones para crear nuestro juego y que explicaremos
ahora solo algunas instrucciones. Para ayudarnos a comprender mejor las instrucciones, usaremos el
siguiente simulador online:

https://tony-cruise.github.io/6502Simulatorhtml

https://makeclassicgames.dev/pdfs/6502.pdf
https://tony-cruise.github.io/6502Simulator.html

5. Programacion en ensamblador (NES)

En la proxima sesion....

Configuracion de la memoria
Constantes y variables
Funciones y Macros
Inicializacion de la consola

Cartucho VES Consola

-

Program ROM (

[16!(ROM - Bank oJ

[16!(ROM - Bank 1J k

r

_

Pattern ROM
[8KB ROM J RAM (2kB)

.

L[Aditional RAM (Optional)

6. Estructura de un Juego de NES

Hay que tener en cuenta que nuestro juego necesitara:

ROM de programa (alojado en el cartucho). Contiene el cadigo del programa.

ROM de Patrones (alojado en el cartucho). Contiene los patrones o graficos del programa.
RAM de la consola. Que guardara las variables y datos del programa en ejecucion.

RAM Adicional. Algunos cartuchos incluyen RAM adicional.

Todos estos elementos, nos van a permitir crear nuestro juego. Pero es importante definir todas las
zonas que usaremos en el juego para gestionarlos correctamente. Para ello, vamos a ver el mapa de
memoria de la NES.

IRQ/NMI/Reset Vectors

32KB Pr09ram ROM

8kB Optional RAM (Cartucho)

APU/Control Map

7. Mapa de Memoria de la NES

Lonas logicas de la memoria

e [P (Zero page): Primeros 256 bytes de la memoria.

0AM: Seccidn de la RAM que almacena una copia de la tabla de definicion de sprites. (256
bytes)

RAM: Resto de datos de la RAM.

HDR: Header ROM. Contiene la cabecera de la ROM. 16 bytes

PRG: ROM Program. Contiene el codigo de nuestro programa (32Kb).

CHR; Tiles ROM. Contiene los graficos de nuestro programa (8Kb).

7. Mapa de Memoria de la NES

Segmentos

Los siguientes segmentos se usaran en nuestro ensamblador.

[P: Zero Page

OAM: tabla de Sprites

BSS: Informacion para las paletas

HEADER: Cabecera

CODE: Cadigo del programa

RODATA: Informacion almacenada en nuestra ROM
VECTORS: Almacena los vectores de interrupcion o reset.
TILES: Almacenara la informacion de los Tiles o graficos.

8. Comenzar Proyecto

Vamos a comenzar nuestro proyecto pero... por donde empezamos?

e (Crear nuestras funciones y macros
Variables y constantes necesarias (ZP, puertos,etc...).

e Inicializar la consola:

o Configurar interrupciones
o Inicio PPU
o Inicio 0AM

e Preparar fondos
e |Iniciar Sprites
e leer mandos

.proc sumy2
| ldy #2 ; Almacenamos el valor 2 en el registro Y
sty $0300 ; Guardamos el valor de Y en la direccidén de memoria $0300
clc ; Limpiamos el flag de acarreo antes de la suma
adc $0300 ; Sumamos el valor en $0300 (2) al acumulador (0)
sta $0301 ; Guardamos el resultado de la suma en la direccidén de memoria $0301
rts ; retornamos de la subrutina
.endproc

lda #3
jsr sumy2

.macro SUBTRACT_A_FROM_B dest, src

LDA \src
SEC

SBC \dest
| STA \dest
.endmacro

; Set carry for subtraction

SUBTRACT A FROM B $05, $03

; Joystick/Controller values
JOYPAD1 = $4016 ; Joypad 1 (Read/Write)
JOYPAD2 = $4017 ; Joypad 2 (Read/Write)

.segment "ZEROPAGE"

; Gamepad bit values
PAD A $01
PAD B $02
PAD_SELECT = $04
PAD START $08
PAD U $10
PAD D $20
PAD L $40
PAD R $80

nmi ready: .res 1

gamepad: .res 1

d X .res 1
.res 1

9. Inicializar Consola

Antes de hacer cualquier accion de nuestro juego, necesitaremos inicializar todos los elementos del
hardware y los recursos que vamos a utilizar (nametables, sprites, paletas, interrupciones....). Es por
ello que veremos algunas de estas acciones:

Inicializar subprogramas para interrupcion
inicializar fondos
inicializar paletas
inicializar sprites

interrupt
_é

call to subprogram

\ Int Subprogram

return to program

9. Inicializar Consola

Interrupciones (vectores)

NES, tiene un espacio de memoria para almacenar las direcciones de los manejadores de
estas interrupciones. a este espacio o segmento se le llama vectors; y normalmente establece
3 manejadores:

e [RQ: Interrupcion por hardware. Establece la subrutina que se llamara cuando un
hardware externo mande informacion.

e NMI Interrupcion lanzada cuando se pinta la pantalla (vBlank).

e Reset: Vuelve al punto inicial de la consola.

9. Inicializar Consola

Interrupciones (vectores)

NES, tiene un espacio de memoria para almacenar las direcciones de los manejadores de
estas interrupciones. a este espacio o segmento se le llama vectors; y normalmente establece
3 manejadores:

e [RQ: Interrupcion por hardware. Establece la subrutina que se llamara cuando un
hardware externo mande informacion.

e NMI Interrupcion lanzada cuando se pinta la pantalla (vBlank).

e Reset: Vuelve al punto inicial de la consola.

draw Horizonal

Draw Vertical

Launch VBlank Int

VBlank Int subprogram execution

9. Inicializar Consola

Por lo tanto en el tiempo que tarda en reiniciar el pintado de pantalla, podemos:

Copiar los registros a la Pila
Actualizar los Sprites
Actualizar los fondos e informacion del juego.

o
o
o
e Reiniciar los valores de la pila a los registros.

; Define PPU Registers

PPU_CONTROL = $2000 ; PPU Control Register 1 (Write)

PPU_MASK = $2001 ; PPU Control Register 2 (Write)

PPU_STATUS = $2002; PPU Status Register (Read)

PPU_SPRRAM ADDRESS = $2003 ; PPU SPR-RAM Address Register (Write)

PPU_SPRRAM I0 = $2004 ; PPU SPR-RAM I/0 Register (Write)
PPU_VRAM ADDRESS1 = $2005 ; PPU VRAM Address Register 1 (Write)
PPU_VRAM ADDRESS2 = $2006 ; PPU VRAM Address Register 2 (Write)
PPU_VRAM I0 = $2007 ; VRAM I/0 Register (Read/Write)

SPRITE DMA = $4014 ; Sprite DMA Register

9. Inicializar la consola

Inicializacion y Gestion de Sprites

Existe una zona de memoria llamada Oam(Object Attribute Memory) que nos va a permitir almacenar
informacion para los Sprites. Normalmente se establece en una zona de memoria de 256 bytes; para
cada sprite se almacena:

e Posicion Y en pantalla (1 byte).
e Indice del tile (Patrén) a utilizar (1 byte).
e Atributos (1 byte): dependiendo del bit de este byte:
o 0-1: La paleta a utilizar (4 disponibles).
o 5:Indica si el Sprite se muestra delante o detras del fondo actual.

o b:Indica si esta volteado horizontalmente.
o I:Indica si esta volteado verticalmente.

e Posicion X en la pantalla(1 byte).

10. Referencias

Classic Game Programming on the NES - Tony Cruise Ed. Manning.
CC65: https://cc65.github.io/

NEXXT Studio: https://frankengraphics.itch.io/nexxt

Mesen: https://www.mesen.ca/

https://cc65.github.io/
https://frankengraphics.itch.io/nexxt
https://www.mesen.ca/

